a2+16=64

Simple and best practice solution for a2+16=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a2+16=64 equation:



a2+16=64
We move all terms to the left:
a2+16-(64)=0
We add all the numbers together, and all the variables
a^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $

See similar equations:

| -6+10k+2k=10k-2 | | 5x+87=2 | | T/2.5t=125 | | t-3=-2t=-5 | | –4p−5=–7−6p | | -6h-9=-9+6h | | 35+15x=18.5 | | 12x5=60+5= | | -32=x-6 | | –9w=–10w+8 | | 9.6=f/3.2 | | -7w+3-2=8-8w | | 5.5=1.1g | | (5x−43)=(4x−11) | | 9+6p=p+10p-6 | | 4.9=h-6.12 | | 0.5(y-10)=3 | | 2^5x-1=9 | | -2x+10=6x+18 | | 9-2r=-2+9r | | 1/3*3(x+2)=1/3*3*6 | | (2x-12)/16=8/32 | | 1=-5x+6 | | 2+u=-7u-1+9u | | 2.5=x+1.7 | | X/y=1/4 | | -2x+9=-9x-8 | | t+8=24 | | -9-5w=-7w+5 | | 4+2p=10+2p | | 9v=6+10v | | 7.2r=612 |

Equations solver categories