If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+18a+26=-9
We move all terms to the left:
a2+18a+26-(-9)=0
We add all the numbers together, and all the variables
a^2+18a+35=0
a = 1; b = 18; c = +35;
Δ = b2-4ac
Δ = 182-4·1·35
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{46}}{2*1}=\frac{-18-2\sqrt{46}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{46}}{2*1}=\frac{-18+2\sqrt{46}}{2} $
| 1+x=5x-47 | | 5x+-7=-13 | | p-5/2=-4/2 | | 67w=603 | | 5-2m=2.4 | | n2-16n+18=-10 | | 73.50=15/x | | 31p=1240 | | 8=3/w+1 | | 3x-10=26+6x | | 19=x+16 | | 19.1+0.8x=28.7 | | X+6=-3x+54 | | 4-2p-2=-10 | | 6x-5-52x=7+1 | | m=56/8 | | (x+3)^2−1=35 | | 5(18x-8)=6x-19 | | 5x(-4)=2x+4 | | 0.1x+0.25(102+X)=17.10 | | 12y-4=16 | | -3.3=c/2-4 | | -3(x-6)=2(7-7x) | | 3x+17=2x=8x-32 | | (14x+7)+(10x+5)=180 | | -3(x-6=2(7-7x) | | 2w-w+5w=12 | | 2.44(r+3)=9.76 | | .3(x-14)+1=-4x+5 | | 3/2-2/4=x | | 3w+18=0 | | 10n+44=14n= |