If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+5a=0
We add all the numbers together, and all the variables
a^2+5a=0
a = 1; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·1·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*1}=\frac{-10}{2} =-5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*1}=\frac{0}{2} =0 $
| -5x-2=4x+12 | | 3(25-3x)=-330 | | 96=(x-2)(x+2) | | 3x-5/7-x+1/2=5x-3/14-4 | | -2y7+6y=-2 | | x+(.5x)=160000 | | 5=1.12^x | | -6m+1=61 | | 6x+6+8x-1=180 | | 9x-4=5x-26 | | -7y+2(y-3)=24 | | 7/2n-3=5/13 | | (2x+3)+(5x+3)+90=180 | | 1x+-8=-17 | | -2(5x+10)=-140 | | 1/3(6x-12)=24 | | 3/43x+9/43=12/43 | | 150=(360-x)-x | | Q(x)=2048(8)^-3 | | 8.7=n/8-1.4 | | -4(3x-8)=43 | | 2x+96+x=180 | | 54=-2+8x | | 2x+1+x+20=180 | | 18x-42=36+12x | | -3*x=-6 | | F(t)=1500(1+4)^6 | | x-5+2x=77 | | 5x-3=4x-22 | | -6*x=-3 | | F(t)=1500(1+4) | | 40+11x-1=15x-5 |