If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+8a-84=0
We add all the numbers together, and all the variables
a^2+8a-84=0
a = 1; b = 8; c = -84;
Δ = b2-4ac
Δ = 82-4·1·(-84)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*1}=\frac{-28}{2} =-14 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*1}=\frac{12}{2} =6 $
| 7x+8=127 | | x-32=104 | | 4p3=-9+7p | | 4/5+x+89=76 | | 4a-6=+a | | x+84=114 | | 100=4(4x+1) | | 8x-3=+4x-3 | | 38x+44(7)=40x | | 3x+1=−2x+51 | | (5x-20)=85 | | 4(5)-5y=20 | | 10(1.375)^(13t)=80 | | 4x-5(-4)=20 | | 4x=12x-2x | | 8/36=16/n | | u7=128 | | 3k-(6+k)=3 | | 4x+x-6=2(x+8)+x-12 | | 4x-20=10+3x+x | | 3x+396=9 | | 86=-22+2.5x | | 7x+13+6x-1=180 | | 4+x-6=2(x+8)+x-12 | | -72+3x=58 | | 3y+15=40-2y | | (5-x)/3=(x+4)/2 | | (2y-4)=50 | | 9x+48=-12 | | 3e/5=2 | | 56x3=-4 | | -3x^2+48x-180=8 |