If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2-18a=10
We move all terms to the left:
a2-18a-(10)=0
We add all the numbers together, and all the variables
a^2-18a-10=0
a = 1; b = -18; c = -10;
Δ = b2-4ac
Δ = -182-4·1·(-10)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{91}}{2*1}=\frac{18-2\sqrt{91}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{91}}{2*1}=\frac{18+2\sqrt{91}}{2} $
| (5−v)(3v−2)=0 | | 3-9(1+5r)=-28 | | 13x+4x+5=90 | | -10z=49 | | 3r2=10r-8 | | c2+6c=4 | | 2b+7+5b+3= | | 5.x3=21 | | 36.9=b/9 | | 6(4-7f)=-23 | | 5n+250-10n=165 | | n/8.2=(-0.6) | | x+11=29+8x | | 14x8=20 | | 12-3=x+3 | | x.25−3 | | 37.1=b/8 | | 2x-5=19,7 | | 32=9(3z+4) | | x.25−3 | | (x-34)+(2x-118)+(1/2x+17)=180 | | 37.1=b8 | | 2x-5=19,5 | | z+51=4z | | −32+11w=727 | | c/2.0=7 | | 4(q+2)=8 | | f(×)=10 | | -26-6v=-5(8v+7) | | 4(4b-6)=4(3b-7) | | 3x+6=2×-24 | | -z=-8-6(-z+8) |