a2=216

Simple and best practice solution for a2=216 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a2=216 equation:



a2=216
We move all terms to the left:
a2-(216)=0
We add all the numbers together, and all the variables
a^2-216=0
a = 1; b = 0; c = -216;
Δ = b2-4ac
Δ = 02-4·1·(-216)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*1}=\frac{0-12\sqrt{6}}{2} =-\frac{12\sqrt{6}}{2} =-6\sqrt{6} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*1}=\frac{0+12\sqrt{6}}{2} =\frac{12\sqrt{6}}{2} =6\sqrt{6} $

See similar equations:

| x+8=7x= | | 3x^2+4x^2=3 | | 4x+4=-2x+6x+4 | | -3(3/2j-6)=32 | | -1+2x^2=0 | | 11u=6u+30 | | 12x=8,400 | | 144=-16(3+3d | | 64-7u=u | | 0=4x+9 | | 10y=15+5y | | x(x-1)+x(x+1)=1 | | 4/5=n/15= | | 7-2b=-2b+6+1 | | (7-(8x))/3=3x | | 2.25(4x-8)=-2+10x+18 | | -8(1+7m)-2(1-8m)=-50 | | 4+2x=13-7x | | -4x+38=-8(8x+2)-6 | | a-3-3=3a-5a-6 | | 3(3x-4)=1/4(32x+56 | | (x+6)(-5x-4)=0 | | 2x-6(7x+2)=108 | | 4n=n-5+3n | | 3n+13=5n-1 | | Y=1/5(x+4)+6 | | 2/3y+5=-3-2y | | b-5+3b=3 | | 2x2(x+2)(3x-6)=0,x | | Y=(3x^2+2x) | | 6-2y=2(3-y) | | 4​(x-6)+6=6x=6 |

Equations solver categories