(1)/(x)+(1)/(3x) - add fractions

(1)/(x)+(1)/(3x) - step by step solution for the given fractions. Add fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • 1/x + 1/(3*x) = ?
    • The common denominator of the two fractions is: 3*x^2
    • 1/x = (1*3*x)/(3*x*x) = (3*x)/(3*x^2)
    • 1/(3*x) = (1*x)/(3*x*x) = x/(3*x^2)
    • Fractions adjusted to a common denominator
    • 1/x + 1/(3*x) = (3*x)/(3*x^2) + x/(3*x^2)
    • (3*x)/(3*x^2) + x/(3*x^2) = (3*x+x)/(3*x^2)
    • (3*x+x)/(3*x^2) = (4*x)/(3*x^2)
    • (4*x)/(3*x^2) = (4*x^-1)/3

    Solution for the given fractions

    $ \frac{1}{x }+\frac{ 1}{(3*x)} =? $

    The common denominator of the two fractions is: 3*x^2

    $ \frac{1}{x }= \frac{(1*3*x)}{(3*x*x)} = \frac{(3*x)}{(3*x^2)} $

    $ \frac{1}{(3*x)} = \frac{(1*x)}{(3*x*x)} =\frac{ x}{(3*x^2)} $

    Fractions adjusted to a common denominator

    $ \frac{1}{x }+\frac{ 1}{(3*x)} = \frac{(3*x)}{(3*x^2)} +\frac{ x}{(3*x^2)} $

    $ \frac{(3*x)}{(3*x^2)} +\frac{ x}{(3*x^2)} = \frac{(3*x+x)}{(3*x^2)} $

    $ \frac{(3*x+x)}{(3*x^2)} = \frac{(4*x)}{(3*x^2)} $

    $ \frac{(4*x)}{(3*x^2)} = \frac{(4*x^-1)}{3} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (4)/(6)*(2)/(12) - multiplying of fractions | | (7)/(6)-(1)/(15) - subtract fractions | | (7)/(6)+(1)/(15) - addition of fractions | | (12)/(26)+(8)/(13) - adding of fractions | | (11)/(10)-(5)/(8) - subtraction of fractions | | (8)/(13)-(4)/(11) - subtraction of fractions | | (8)/(9)+(13)/(7) - adding of fractions | | (38)/(2)*(27)/(81) - multiplying of fractions | | (7)/(5)-(11)/(9) - subtract fractions | | (5)/(6)+(7)/(8) - addition of fractions | | (14)/(19)/(21)/(57) - divide fractions | | (42)/(54)/(12)/(6) - dividing of fractions | | (32)/(24)*(9)/(45) - multiply fractions | | (50)/(15)/(2)/(3) - dividing of fractions | | (45)/(12)/(54)/(0) - dividing of fractions | | (26)/(39)*(66)/(13) - multiplication of fractions | | (22)/(34)/(33)/(17) - dividing of fractions | | (17)/(29)*(3)/(2) - multiply fractions | | (75)/(15)*(33)/(17) - multiplying of fractions | | (1)/(16)/(9)/(28) - dividing of fractions | | (12)/(35)/(18)/(21) - dividing of fractions | | (9)/(14)+(8)/(12) - adding of fractions | | (13)/(8)-(7)/(12) - subtract fractions | | (3)/(28)+(1)/(21) - addition of fractions | | (14)/(15)-(13)/(20) - subtraction of fractions | | (6)/(11)+(1)/(22) - addition of fractions | | (2)/(5)+(2)/(10) - adding of fractions | | (2)/(5)+(2)/(10) - add fractions | | (32)/(5)+(22)/(10) - adding of fractions | | (2)/(3)*(2)/(5) - multiplying of fractions | | (1)/(5)+(6)/(1) - addition of fractions | | (5)/(4)+(1)/(2) - add fractions |

    Equations solver categories