(2x)/((x-5)*(x+5))+(2x)/((x+3)*(x-3)) - add fractions

(2x)/((x-5)*(x+5))+(2x)/((x+3)*(x-3)) - step by step solution for the given fractions. Add fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • (2*x)/((x-5)*(x+5)) + (2*x)/((x+3)*(x-3)) = ?
    • The common denominator of the two fractions is: (x-5)*(x+5)*(x+3)*(x-3)
    • (2*x)/((x-5)*(x+5)) = (2*x*(x+3)*(x-3))/((x-5)*(x+5)*(x+3)*(x-3)) = (2*x*(x+3)*(x-3))/((x-5)*(x+5)*(x+3)*(x-3))
    • (2*x)/((x+3)*(x-3)) = (2*x*(x-5)*(x+5))/((x+3)*(x-3)*(x-5)*(x+5)) = (2*x*(x-5)*(x+5))/((x-5)*(x+5)*(x+3)*(x-3))
    • Fractions adjusted to a common denominator
    • (2*x)/((x-5)*(x+5)) + (2*x)/((x+3)*(x-3)) = (2*x*(x+3)*(x-3))/((x-5)*(x+5)*(x+3)*(x-3)) + (2*x*(x-5)*(x+5))/((x-5)*(x+5)*(x+3)*(x-3))
    • (2*x*(x+3)*(x-3))/((x-5)*(x+5)*(x+3)*(x-3)) + (2*x*(x-5)*(x+5))/((x-5)*(x+5)*(x+3)*(x-3)) = (2*x*(x+3)*(x-3)+2*x*(x-5)*(x+5))/((x-5)*(x+5)*(x+3)*(x-3))
    • (2*x*(x+3)*(x-3)+2*x*(x-5)*(x+5))/((x-5)*(x+5)*(x+3)*(x-3)) = (2*x*(x+3)*(x-3)+2*x*(x-5)*(x+5))/((x-5)*(x+5)*(x+3)*(x-3))

    Solution for the given fractions

    $ \frac{(2*x)}{((x-5)*(x+5))} + \frac{(2*x)}{((x+3)*(x-3))} =? $

    The common denominator of the two fractions is: (x-5)*(x+5)*(x+3)*(x-3)

    $ \frac{(2*x)}{((x-5)*(x+5))} = \frac{(2*x*(x+3)*(x-3))}{((x-5)*(x+5)*(x+3)*(x-3))} = \frac{(2*x*(x+3)*(x-3))}{((x-5)*(x+5)*(x+3)*(x-3))} $

    $ \frac{(2*x)}{((x+3)*(x-3))} = \frac{(2*x*(x-5)*(x+5))}{((x+3)*(x-3)*(x-5)*(x+5))} = \frac{(2*x*(x-5)*(x+5))}{((x-5)*(x+5)*(x+3)*(x-3))} $

    Fractions adjusted to a common denominator

    $ \frac{(2*x)}{((x-5)*(x+5))} + \frac{(2*x)}{((x+3)*(x-3))} = \frac{(2*x*(x+3)*(x-3))}{((x-5)*(x+5)*(x+3)*(x-3))} + \frac{(2*x*(x-5)*(x+5))}{((x-5)*(x+5)*(x+3)*(x-3))} $

    $ \frac{(2*x*(x+3)*(x-3))}{((x-5)*(x+5)*(x+3)*(x-3))} + \frac{(2*x*(x-5)*(x+5))}{((x-5)*(x+5)*(x+3)*(x-3))} = \frac{(2*x*(x+3)*(x-3)+2*x*(x-5)*(x+5))}{((x-5)*(x+5)*(x+3)*(x-3))} $

    $ \frac{(2*x*(x+3)*(x-3)+2*x*(x-5)*(x+5))}{((x-5)*(x+5)*(x+3)*(x-3))} = \frac{(2*x*(x+3)*(x-3)+2*x*(x-5)*(x+5))}{((x-5)*(x+5)*(x+3)*(x-3))} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (1)/(x-3)+(1)/(x+3) - add fractions | | (1)/(x-5)+(1)/(x+5) - addition of fractions | | (3x)/(12)+(2)/(12) - add fractions | | (9)/(14)-(7)/(6) - subtract fractions | | (3.3)/(Y)+(X)/(1.6) - add fractions | | (a^2+19a-1)/(4a+11)-(a^2+7a-34)/(4a+11) - subtraction of fractions | | (9)/(10)/(6)/(10) - divide fractions | | (11)/(22)/(24)/(44) - dividing of fractions | | (7)/(8)/(14)/(32) - divide fractions | | (1)/(2)/(1)/(16) - dividing of fractions | | (1)/(4)/(1)/(16) - dividing of fractions | | (27)/(11)/(33)/(11) - dividing of fractions | | (7)/(8)/(5)/(6) - dividing of fractions | | (4)/(5)/(4)/(25) - divide fractions | | (1)/(16)*(2)/(32) - multiplication of fractions | | (1)/(16)*(2)/(32) - multiply fractions | | (7)/(8)*(1)/(2) - multiplying of fractions | | (50)/(100)*(5)/(20) - multiplication of fractions | | (1)/(2)*(5)/(32) - multiplication of fractions | | (5)/(8)*(1)/(4) - multiplication of fractions | | (99)/(1000)/(100)/(500) - dividing of fractions | | (150)/(300)/(130)/(300) - divide fractions | | (7)/(9)+(8)/(27) - add fractions | | (1)/(16)+(1)/(32) - add fractions | | (24)/(75)+(6)/(150) - addition of fractions | | (3)/(4)+(1)/(2) - addition of fractions | | (z^2-25)/(z)/(z+5)/(z+1) - dividing of fractions | | (24)/(12)-(9)/(18) - subtraction of fractions | | (1)/(6X)-(5)/(8X) - subtract fractions | | (I)/(6X)-(5)/(8X) - subtraction of fractions | | (46)/(105)/(-1)/(322) - dividing of fractions | | (1)/(21)-(7)/(138) - subtract fractions |

    Equations solver categories