(3x)/(x-8)+(24)/(8-x) - add fractions

(3x)/(x-8)+(24)/(8-x) - step by step solution for the given fractions. Add fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • (3*x)/(x-8) + 24/(8-x) = ?
    • The common denominator of the two fractions is: (x-8)*(8-x)
    • (3*x)/(x-8) = (3*x*(8-x))/((x-8)*(8-x)) = (3*x*(8-x))/((x-8)*(8-x))
    • 24/(8-x) = (24*(x-8))/((8-x)*(x-8)) = (24*(x-8))/((x-8)*(8-x))
    • Fractions adjusted to a common denominator
    • (3*x)/(x-8) + 24/(8-x) = (3*x*(8-x))/((x-8)*(8-x)) + (24*(x-8))/((x-8)*(8-x))
    • (3*x*(8-x))/((x-8)*(8-x)) + (24*(x-8))/((x-8)*(8-x)) = (3*x*(8-x)+24*(x-8))/((x-8)*(8-x))
    • (3*x*(8-x)+24*(x-8))/((x-8)*(8-x)) = (3*x*(8-x)+24*(x-8))/((x-8)*(8-x))

    Solution for the given fractions

    $ \frac{(3*x)}{(x-8)} +\frac{ 24}{(8-x)} =? $

    The common denominator of the two fractions is: (x-8)*(8-x)

    $ \frac{(3*x)}{(x-8)} = \frac{(3*x*(8-x))}{((x-8)*(8-x))} = \frac{(3*x*(8-x))}{((x-8)*(8-x))} $

    $ \frac{24}{(8-x)} = \frac{(24*(x-8))}{((8-x)*(x-8))} = \frac{(24*(x-8))}{((x-8)*(8-x))} $

    Fractions adjusted to a common denominator

    $ \frac{(3*x)}{(x-8)} +\frac{ 24}{(8-x)} = \frac{(3*x*(8-x))}{((x-8)*(8-x))} + \frac{(24*(x-8))}{((x-8)*(8-x))} $

    $ \frac{(3*x*(8-x))}{((x-8)*(8-x))} + \frac{(24*(x-8))}{((x-8)*(8-x))} = \frac{(3*x*(8-x)+24*(x-8))}{((x-8)*(8-x))} $

    $ \frac{(3*x*(8-x)+24*(x-8))}{((x-8)*(8-x))} = \frac{(3*x*(8-x)+24*(x-8))}{((x-8)*(8-x))} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (5)/(8)+(27)/(40) - adding of fractions | | (29)/(9)*(38)/(7) - multiply fractions | | (18)/(9)*(31)/(7) - multiplying of fractions | | (10)/(23)-(17)/(19) - subtraction of fractions | | (50)/(1)/(37)/(32) - divide fractions | | (9)/(1)-(1)/(1) - subtraction of fractions | | (6)/(7)-(11)/(21) - subtraction of fractions | | (3)/(1)*(11)/(5) - multiplying of fractions | | (2x)/(3)+(32)/(6) - adding of fractions | | (7)/((x+3)(x-3))+(3)/((x+3)(x+3)) - add fractions | | (35)/(1)/(14)/(3) - dividing of fractions | | (35)/(1)/(2)/(8) - dividing of fractions | | (5)/(x+2)-(3)/(x-1) - subtraction of fractions | | (N)/(1)*(22)/(5) - multiplication of fractions | | (2x)/(2x-3)-(5)/(2x+3) - subtraction of fractions | | (80)/(7)-(95)/(14) - subtraction of fractions | | (208)/(3)-(803)/(18) - subtract fractions | | (97)/(8)+(69)/(4) - addition of fractions | | (11)/(5)*(13)/(4) - multiplication of fractions | | (51)/(70)/(12)/(35) - dividing of fractions | | (1)/(5)+(1)/(7) - addition of fractions | | (3)/(10)+(3)/(7) - adding of fractions | | (5)/(11)/(19)/(11) - dividing of fractions | | (2)/(1)*(1)/(3) - multiplying of fractions | | (1)/(4)-(5)/(7) - subtraction of fractions | | (-5)/(14)+(17)/(28) - add fractions | | (47)/(70)+(1)/(7) - addition of fractions | | (8)/(5)-(13)/(14) - subtraction of fractions | | (1)/(6)-(5)/(8) - subtraction of fractions | | (-4)/(13)-(4)/(39) - subtraction of fractions | | (35)/(9)+(19)/(9) - addition of fractions | | (17)/(9)+(18)/(9) - add fractions |

    Equations solver categories