(y2+13y+42)/(z2-9z-20)+(z2-19y+81)/(x2+12x+36) - add fractions

(y2+13y+42)/(z2-9z-20)+(z2-19y+81)/(x2+12x+36) - step by step solution for the given fractions. Add fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • (y^2+13*y+42)/(z^2-(9*z)-20) + (z^2-(19*y)+81)/(x^2+12*x+36) = ?
    • The common denominator of the two fractions is: (z^2-9*z-20)*(x^2+12*x+36)
    • (y^2+13*y+42)/(z^2-(9*z)-20) = ((y^2+13*y+42)*(x^2+12*x+36))/((z^2-(9*z)-20)*(x^2+12*x+36)) = ((y^2+13*y+42)*(x^2+12*x+36))/((z^2-9*z-20)*(x^2+12*x+36))
    • (z^2-(19*y)+81)/(x^2+12*x+36) = ((z^2-(19*y)+81)*(z^2-(9*z)-20))/((x^2+12*x+36)*(z^2-(9*z)-20)) = ((z^2-19*y+81)*(z^2-9*z-20))/((z^2-9*z-20)*(x^2+12*x+36))
    • Fractions adjusted to a common denominator
    • (y^2+13*y+42)/(z^2-(9*z)-20) + (z^2-(19*y)+81)/(x^2+12*x+36) = ((y^2+13*y+42)*(x^2+12*x+36))/((z^2-9*z-20)*(x^2+12*x+36)) + ((z^2-19*y+81)*(z^2-9*z-20))/((z^2-9*z-20)*(x^2+12*x+36))
    • ((y^2+13*y+42)*(x^2+12*x+36))/((z^2-9*z-20)*(x^2+12*x+36)) + ((z^2-19*y+81)*(z^2-9*z-20))/((z^2-9*z-20)*(x^2+12*x+36)) = ((y^2+13*y+42)*(x^2+12*x+36)+(z^2-19*y+81)*(z^2-9*z-20))/((z^2-9*z-20)*(x^2+12*x+36))
    • ((y^2+13*y+42)*(x^2+12*x+36)+(z^2-19*y+81)*(z^2-9*z-20))/((z^2-9*z-20)*(x^2+12*x+36)) = ((y^2+13*y+42)*(x^2+12*x+36)+(z^2-19*y+81)*(z^2-9*z-20))/((z^2-9*z-20)*(x^2+12*x+36))

    Solution for the given fractions

    $ \frac{(y^2+13*y+42)}{(z^2-(9*z)-20)} + \frac{(z^2-(19*y)+81)}{(x^2+12*x+36)} =? $

    The common denominator of the two fractions is: (z^2-9*z-20)*(x^2+12*x+36)

    $ \frac{(y^2+13*y+42)}{(z^2-(9*z)-20)} = \frac{((y^2+13*y+42)*(x^2+12*x+36))}{((z^2-(9*z)-20)*(x^2+12*x+36))} = \frac{((y^2+13*y+42)*(x^2+12*x+36))}{((z^2-9*z-20)*(x^2+12*x+36))} $

    $ \frac{(z^2-(19*y)+81)}{(x^2+12*x+36)} = \frac{((z^2-(19*y)+81)*(z^2-(9*z)-20))}{((x^2+12*x+36)*(z^2-(9*z)-20))} = \frac{((z^2-19*y+81)*(z^2-9*z-20))}{((z^2-9*z-20)*(x^2+12*x+36))} $

    Fractions adjusted to a common denominator

    $ \frac{(y^2+13*y+42)}{(z^2-(9*z)-20)} + \frac{(z^2-(19*y)+81)}{(x^2+12*x+36)} = \frac{((y^2+13*y+42)*(x^2+12*x+36))}{((z^2-9*z-20)*(x^2+12*x+36))} + \frac{((z^2-19*y+81)*(z^2-9*z-20))}{((z^2-9*z-20)*(x^2+12*x+36))} $

    $ \frac{((y^2+13*y+42)*(x^2+12*x+36))}{((z^2-9*z-20)*(x^2+12*x+36))} + \frac{((z^2-19*y+81)*(z^2-9*z-20))}{((z^2-9*z-20)*(x^2+12*x+36))} = \frac{((y^2+13*y+42)*(x^2+12*x+36)+(z^2-19*y+81)*(z^2-9*z-20))}{((z^2-9*z-20)*(x^2+12*x+36))} $

    $ \frac{((y^2+13*y+42)*(x^2+12*x+36)+(z^2-19*y+81)*(z^2-9*z-20))}{((z^2-9*z-20)*(x^2+12*x+36))} = \frac{((y^2+13*y+42)*(x^2+12*x+36)+(z^2-19*y+81)*(z^2-9*z-20))}{((z^2-9*z-20)*(x^2+12*x+36))} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (3)/(5)+(2)/(3t) - add fractions | | (3)/(1)*(7)/(9) - multiply fractions | | (8)/(10)*(15)/(170) - multiplying of fractions | | (4)/(5)+(1)/(20) - add fractions | | (5)/(12)/(15)/(24) - divide fractions | | (5)/(12)+(15)/(25) - add fractions | | (4.6)/(4.6)/(36.8)/(4.6) - divide fractions | | (3)/(1)*(5)/(6) - multiplication of fractions | | (5)/(1)*(1)/(5) - multiply fractions | | (5)/(1)*(3)/(10) - multiplying of fractions | | (105)/(1)*(6)/(7) - multiplication of fractions | | (5)/(1)*(2)/(5) - multiply fractions | | (1)/(5)*(2)/(5) - multiplication of fractions | | (8)/(10)*(15)/(170) - multiplication of fractions | | (5)/(8)-(2)/(7) - subtraction of fractions | | (4(2)x)/((3))-(5)/(1) - subtraction of fractions | | (4(2))/((3))-(5)/(1) - subtraction of fractions | | (1x)/(3)+(1)/(2) - adding of fractions | | (6)/(y)+(3)/(1/2) - add fractions | | (-2)/(15x)+(x)/(5) - addition of fractions | | (1)/(15)*(3x)/(1) - multiply fractions | | (1)/(3)+(2)/(5) - adding of fractions | | (9)/(21)+(2)/(7) - add fractions | | (13)/(3)*(10)/(2) - multiplying of fractions | | (1)/(2)/(-3)/(5) - dividing of fractions | | (4)/(5)-(32)/(40) - subtract fractions | | (4)/(5)-(-3)/(8) - subtraction of fractions | | (2)/(3)+(1)/(6) - addition of fractions | | (2)/(3)-(1)/(6) - subtract fractions | | (7+7)/(6y8)+(-2+1)/(3y7) - addition of fractions | | (0.005)/(1)/(x)/(2) - dividing of fractions | | (4)/(1)*(248)/(12) - multiplication of fractions |

    Equations solver categories