(1)/(A2b)+(3)/(A4) - adding of fractions

(1)/(A2b)+(3)/(A4) - step by step solution for the given fractions. Adding of fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • 1/(A^2*b) + 3/(A^4) = ?
    • The common denominator of the two fractions is: A^6*b
    • 1/(A^2*b) = (1*A^4)/(A^2*A^4*b) = (A^4)/(A^6*b)
    • 3/(A^4) = (3*A^2*b)/(A^2*A^4*b) = (3*A^2*b)/(A^6*b)
    • Fractions adjusted to a common denominator
    • 1/(A^2*b) + 3/(A^4) = (A^4)/(A^6*b) + (3*A^2*b)/(A^6*b)
    • (A^4)/(A^6*b) + (3*A^2*b)/(A^6*b) = (A^4+3*A^2*b)/(A^6*b)
    • (A^4+3*A^2*b)/(A^6*b) = (A^4+3*A^2*b)/(A^6*b)

    Solution for the given fractions

    $ \frac{1}{(A^2*b)} +\frac{ 3}{(A^4)} =? $

    The common denominator of the two fractions is: A^6*b

    $ \frac{1}{(A^2*b)} = \frac{(1*A^4)}{(A^2*A^4*b)} = \frac{(A^4)}{(A^6*b)} $

    $ \frac{3}{(A^4)} = \frac{(3*A^2*b)}{(A^2*A^4*b)} = \frac{(3*A^2*b)}{(A^6*b)} $

    Fractions adjusted to a common denominator

    $ \frac{1}{(A^2*b)} +\frac{ 3}{(A^4)} = \frac{(A^4)}{(A^6*b)} + \frac{(3*A^2*b)}{(A^6*b)} $

    $ \frac{(A^4)}{(A^6*b)} + \frac{(3*A^2*b)}{(A^6*b)} = \frac{(A^4+3*A^2*b)}{(A^6*b)} $

    $ \frac{(A^4+3*A^2*b)}{(A^6*b)} = \frac{(A^4+3*A^2*b)}{(A^6*b)} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (11)/(12)+(3)/(5) - addition of fractions | | (7)/(6)-(9)/(x) - subtraction of fractions | | (5)/(6)+(18)/(25) - add fractions | | (7)/(10)+(3)/(4) - addition of fractions | | (1)/(A*a*b)+(3)/(A*a*a*a) - addition of fractions | | (-11)/(9)+(5)/(7) - add fractions | | (4)/(9)-(5)/(3) - subtraction of fractions | | (2)/(5)*(1)/(6) - multiplying of fractions | | (2)/(X)+(2)/(Y) - adding of fractions | | (11)/(12)+(3)/(5) - adding of fractions | | (x)/(8)+(1)/(10) - adding of fractions | | (5)/(6)+(5)/(7) - add fractions | | (5)/(2)/(1)/(3) - divide fractions | | (8)/(3)-(1)/(6) - subtraction of fractions | | (3)/(1)/(1)/(3) - dividing of fractions | | (2y)/(9)-(3)/(4y) - subtract fractions | | (4)/(3)*(1)/(12) - multiply fractions | | (4)/(5)+(1)/(y) - add fractions | | (11)/(9)+(1)/(3) - adding of fractions | | (5^5)/(5^-7)/(1)/(1) - dividing of fractions | | (x-10)/(10)/(18)/(12) - divide fractions | | (x)/(2)+(9)/(10) - add fractions | | (4)/(5)+(4)/(5) - add fractions | | (5)/(9)*(10)/(11) - multiply fractions | | (2100)/(1)/(3)/(4) - dividing of fractions | | (1)/(4)-(1)/(10) - subtract fractions | | (x)/(x-3)-(x+1)/(x-1) - subtract fractions | | (x+1)/(x+2)-(2x^2-6x+4)/(x^2+3x+2) - subtract fractions | | (4)/(8)+(2)/(5) - adding of fractions | | (x)/(10)+(1)/(5) - add fractions | | (X+3)/(6)+(X+5)/(5) - addition of fractions | | (4)/(15)-(1)/(15) - subtraction of fractions |

    Equations solver categories