(1x1)/(6x-5)+(8x9)/(6x-5) - adding of fractions

(1x1)/(6x-5)+(8x9)/(6x-5) - step by step solution for the given fractions. Adding of fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • (1*x^1)/(6*x-5) + (8*x^9)/(6*x-5) = ?
    • The common denominator of the two fractions is: (6*x-5)^2
    • (1*x^1)/(6*x-5) = (1*x^1*(6*x-5))/((6*x-5)*(6*x-5)) = (x*(6*x-5))/((6*x-5)^2)
    • (8*x^9)/(6*x-5) = (8*x^9*(6*x-5))/((6*x-5)*(6*x-5)) = (8*x^9*(6*x-5))/((6*x-5)^2)
    • Fractions adjusted to a common denominator
    • (1*x^1)/(6*x-5) + (8*x^9)/(6*x-5) = (x*(6*x-5))/((6*x-5)^2) + (8*x^9*(6*x-5))/((6*x-5)^2)
    • (x*(6*x-5))/((6*x-5)^2) + (8*x^9*(6*x-5))/((6*x-5)^2) = (x*(6*x-5)+8*x^9*(6*x-5))/((6*x-5)^2)
    • (x*(6*x-5)+8*x^9*(6*x-5))/((6*x-5)^2) = (x*(6*x-5)+8*x^9*(6*x-5))/((6*x-5)^2)

    Solution for the given fractions

    $ \frac{(1*x^1)}{(6*x-5)} + \frac{(8*x^9)}{(6*x-5)} =? $

    The common denominator of the two fractions is: (6*x-5)^2

    $ \frac{(1*x^1)}{(6*x-5)} = \frac{(1*x^1*(6*x-5))}{((6*x-5)*(6*x-5))} = \frac{(x*(6*x-5))}{((6*x-5)^2)} $

    $ \frac{(8*x^9)}{(6*x-5)} = \frac{(8*x^9*(6*x-5))}{((6*x-5)*(6*x-5))} = \frac{(8*x^9*(6*x-5))}{((6*x-5)^2)} $

    Fractions adjusted to a common denominator

    $ \frac{(1*x^1)}{(6*x-5)} + \frac{(8*x^9)}{(6*x-5)} = \frac{(x*(6*x-5))}{((6*x-5)^2)} + \frac{(8*x^9*(6*x-5))}{((6*x-5)^2)} $

    $ \frac{(x*(6*x-5))}{((6*x-5)^2)} + \frac{(8*x^9*(6*x-5))}{((6*x-5)^2)} = \frac{(x*(6*x-5)+8*x^9*(6*x-5))}{((6*x-5)^2)} $

    $ \frac{(x*(6*x-5)+8*x^9*(6*x-5))}{((6*x-5)^2)} = \frac{(x*(6*x-5)+8*x^9*(6*x-5))}{((6*x-5)^2)} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (2)/(3)+(3)/(18) - addition of fractions | | (x-3)/(12)+(5x-21)/(12) - add fractions | | (7x)/(13)+(2x)/(13) - addition of fractions | | (9)/(25)*(6)/(27) - multiplying of fractions | | (35)/(50)*(36)/(70) - multiplying of fractions | | (1^4)/(7^4)*(1^3)/(7^3) - multiply fractions | | (35)/(50)*(36)/(70) - multiply fractions | | (36)/(100)*(6)/(27) - multiplying of fractions | | (5)/(5)+(2)/(3) - adding of fractions | | (17)/(12)-(1)/(2) - subtract fractions | | (2)/(3)+(3)/(4) - addition of fractions | | (2)/(3)+(1)/(2) - addition of fractions | | (5)/(6)*(3)/(4) - multiplication of fractions | | (a)/(2)-(b)/(2) - subtraction of fractions | | (6)/(x)/(7)/(x+3) - divide fractions | | (4)/(5)/(3)/(7) - dividing of fractions | | (5)/(12)*(378)/(1) - multiply fractions | | (5)/(12)+(378)/(1) - add fractions | | (13)/(2)+(37)/(3) - add fractions | | (1)/(4)/(1)/(8) - divide fractions | | (1)/(4)+(1)/(8) - adding of fractions | | (10)/(3)-(27)/(5) - subtraction of fractions | | (5)/(2x-7)+(4)/(4x+2) - addition of fractions | | (10)/(13)-(5)/(6) - subtraction of fractions | | (2)/(X-2)+(X^2-4)/(4) - add fractions | | (5)/(7)/(4)/(6) - divide fractions | | (5)/(7)*(4)/(6) - multiply fractions | | (7)/(8)/(2)/(3) - divide fractions | | (2)/(5)/(5)/(7) - divide fractions | | (2)/(15)+(1)/(8) - add fractions | | (65)/(6)-(26)/(6) - subtraction of fractions | | (54)/(3)-(43)/(6) - subtraction of fractions |

    Equations solver categories