(5)/(2+p)+(8)/(3p-1) - addition of fractions

(5)/(2+p)+(8)/(3p-1) - step by step solution for the given fractions. Addition of fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • 5/(p+2) + 8/(3*p-1) = ?
    • The common denominator of the two fractions is: (p+2)*(3*p-1)
    • 5/(p+2) = (5*(3*p-1))/((p+2)*(3*p-1)) = (5*(3*p-1))/((p+2)*(3*p-1))
    • 8/(3*p-1) = (8*(p+2))/((3*p-1)*(p+2)) = (8*(p+2))/((p+2)*(3*p-1))
    • Fractions adjusted to a common denominator
    • 5/(p+2) + 8/(3*p-1) = (5*(3*p-1))/((p+2)*(3*p-1)) + (8*(p+2))/((p+2)*(3*p-1))
    • (5*(3*p-1))/((p+2)*(3*p-1)) + (8*(p+2))/((p+2)*(3*p-1)) = (5*(3*p-1)+8*(p+2))/((p+2)*(3*p-1))
    • (5*(3*p-1)+8*(p+2))/((p+2)*(3*p-1)) = (5*(3*p-1)+8*(p+2))/((p+2)*(3*p-1))

    Solution for the given fractions

    $ \frac{5}{(p+2)} +\frac{ 8}{(3*p-1)} =? $

    The common denominator of the two fractions is: (p+2)*(3*p-1)

    $ \frac{5}{(p+2)} = \frac{(5*(3*p-1))}{((p+2)*(3*p-1))} = \frac{(5*(3*p-1))}{((p+2)*(3*p-1))} $

    $ \frac{8}{(3*p-1)} = \frac{(8*(p+2))}{((3*p-1)*(p+2))} = \frac{(8*(p+2))}{((p+2)*(3*p-1))} $

    Fractions adjusted to a common denominator

    $ \frac{5}{(p+2)} +\frac{ 8}{(3*p-1)} = \frac{(5*(3*p-1))}{((p+2)*(3*p-1))} + \frac{(8*(p+2))}{((p+2)*(3*p-1))} $

    $ \frac{(5*(3*p-1))}{((p+2)*(3*p-1))} + \frac{(8*(p+2))}{((p+2)*(3*p-1))} = \frac{(5*(3*p-1)+8*(p+2))}{((p+2)*(3*p-1))} $

    $ \frac{(5*(3*p-1)+8*(p+2))}{((p+2)*(3*p-1))} = \frac{(5*(3*p-1)+8*(p+2))}{((p+2)*(3*p-1))} $

    $ $

    see mathematical notation

     

    See similar equations:

    | (4)/(5)+(-3)/(20) - adding of fractions | | (-12y^3)/(13)*(2)/(9y^6) - multiply fractions | | (-24)/(13)*(-7)/(18) - multiply fractions | | (1)/(2)*(-8)/(11) - multiplying of fractions | | (24)/(7)*(5)/(2) - multiplying of fractions | | (-23)/(24)*(-6)/(17) - multiply fractions | | (-6)/(23)*(9)/(10) - multiply fractions | | (17)/(12)*(3)/(4) - multiply fractions | | (2)/(15)*(-9)/(8) - multiplying of fractions | | (8)/(13)*(-1)/(6) - multiply fractions | | (-5)/(11)*(7)/(20) - multiplying of fractions | | (21)/(8)*(-14)/(15) - multiplication of fractions | | (20)/(11)*(-17)/(22) - multiply fractions | | (20)/(11)+(-17)/(22) - addition of fractions | | (-4)/(19)*(21)/(8) - multiplying of fractions | | (-21)/(4)*(22)/(19) - multiplication of fractions | | (10x)/(11)+(10x)/(9) - adding of fractions | | (18)/(8)/(8)/(15) - dividing of fractions | | (-5)/(8)/(11)/(4) - dividing of fractions | | (-21)/(20)/(22)/(8) - dividing of fractions | | (5)/(18)*(3)/(10) - multiplying of fractions | | (7)/(5)*(8)/(14) - multiply fractions | | (4)/(6)*(11)/(16) - multiplying of fractions | | (7)/(4)+(2)/(5) - adding of fractions | | (3)/(8)-(1)/(7) - subtract fractions | | (4)/(3)+(4)/(3) - add fractions | | (6)/(5)-(1)/(8) - subtraction of fractions | | (2)/(4)+(3)/(4) - addition of fractions | | (8)/(16)+(3)/(8) - addition of fractions | | (63)/(65)*(39)/(18) - multiplying of fractions | | (5)/(9)-(5)/(18) - subtraction of fractions | | (21)/(5)*(22)/(9) - multiplying of fractions |

    Equations solver categories