If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b(2)=80+20
We move all terms to the left:
b(2)-(80+20)=0
We add all the numbers together, and all the variables
b2-100=0
We add all the numbers together, and all the variables
b^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| b(0)=80+20 | | -11=6t-5t^2 | | 7/3(1/2x-10/3)=-35/3-1/2x | | C(40)=0.05x+13.50 | | 6x−48=−2 | | b(1)=80+20 | | 13/4r=34/8 | | C(x)=0.05x+13.50 | | -46-6y=200 | | v(v-4)-21=0 | | 8y^2-8y-48=0 | | 9+10*45=z | | 4d+16=49 | | 25*25=400+x*x | | 6^2x-4=35 | | -5y+33=4(y-3) | | x/7-10=45 | | t(6-t)=5 | | 0.24x+2(0.3+3)=12 | | 3+y=7 | | 192=t(128-t) | | 3(v-2)-6v=-3 | | 0.02*6.35=x*7 | | t(144-t)=224 | | (6n-20)+(5n+11)=(171-n) | | t(-t+144)=224 | | x/3+7=6+4 | | (x+2)(x+2)=81+(x+1)(x+1) | | x*x+(x+60)(x+60)=90000 | | 0.3x+1.7=0.4(x+5)−0.1x | | 19x-49=19x-49 | | 3.4−0.6x=2x−(0.4x+1) |