b(b+30)=32175

Simple and best practice solution for b(b+30)=32175 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b(b+30)=32175 equation:



b(b+30)=32175
We move all terms to the left:
b(b+30)-(32175)=0
We multiply parentheses
b^2+30b-32175=0
a = 1; b = 30; c = -32175;
Δ = b2-4ac
Δ = 302-4·1·(-32175)
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{129600}=360$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-360}{2*1}=\frac{-390}{2} =-195 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+360}{2*1}=\frac{330}{2} =165 $

See similar equations:

| 4x-22=-4 | | 12+(0x)=37 | | 5^3w-1=4^250 | | 5a-18=70 | | (2x+5)+(6x-25)=180 | | 12÷0x=37 | | -4=7(w-2)-5w | | -2(6x-1)=-82 | | 450=7x+9 | | 5+8/x=x+7 | | 24m+28=17m+35 | | 1/7x=1 | | 21x^+3x+4=0 | | -5(4x-8)=160 | | x+3/5=-2 | | 1/2x^2-1/14x-13/7=0 | | 4/5x-3/4x=7/8x-9 | | 5(2x-5)=65 | | x-(x/5)=120 | | 5(v+2)+2v=24 | | 5x+12=15x-19 | | 25^x+3/625^x-4=125^2x+7 | | 5(-10-3x)=-170 | | 2.1+y=7 | | 9m+7=49 | | 5x+16=x-7 | | 4.6+x=9.4 | | (t^2)/4+2t=-1/2 | | 3x-5/3=1/6+2x | | -5(x+2)-x-7=-6(x+4)+7 | | 18w^2-27w=0 | | -4(5-5x)=140 |

Equations solver categories