b+(3b+10)+(3b-10)2b=360

Simple and best practice solution for b+(3b+10)+(3b-10)2b=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+(3b+10)+(3b-10)2b=360 equation:



b+(3b+10)+(3b-10)2b=360
We move all terms to the left:
b+(3b+10)+(3b-10)2b-(360)=0
We multiply parentheses
6b^2+b+(3b+10)-20b-360=0
We get rid of parentheses
6b^2+b+3b-20b+10-360=0
We add all the numbers together, and all the variables
6b^2-16b-350=0
a = 6; b = -16; c = -350;
Δ = b2-4ac
Δ = -162-4·6·(-350)
Δ = 8656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8656}=\sqrt{16*541}=\sqrt{16}*\sqrt{541}=4\sqrt{541}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{541}}{2*6}=\frac{16-4\sqrt{541}}{12} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{541}}{2*6}=\frac{16+4\sqrt{541}}{12} $

See similar equations:

| 20+w=0 | | z+8/6=18 | | -6=11-g | | 47+-8x=111 | | 25/x-2=5 | | 4v-1=15 | | 17+4w=-9 | | 4x+7x-5=16 | | 6x-12=x+38 | | -4=6-5b | | (x+4)²+(x-6)²=4(17-x+x²/4) | | -13-7n=-6-9{n+3} | | -8=6n+4 | | 2y-11=20 | | 5t-7=t+9 | | 5z+4=3z—6 | | 4.9x^2+25x-42=0 | | 5x+27=117 | | 54−10x=20+7x | | 3-5(x+1)=2x-8 | | 2x+7+5x=7 | | 0.5=x-3 | | 35=5r-10 | | 34m=9 | | 3s−−36=−12 | | x/16=5/12 | | n-29-22=-49 | | w/8+1=-5 | | x/13=14 | | 24x^2-54x+12=0 | | 4(5y-9)-24y+70=4(-21y) | | (3/x-4)=(5/2x-3) |

Equations solver categories