If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+(b+15)+90+(2b-90)+3/2b=540
We move all terms to the left:
b+(b+15)+90+(2b-90)+3/2b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(b+15)+(2b-90)+3/2b-450=0
We get rid of parentheses
b+b+2b+3/2b+15-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+15*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+30b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-1050b+3=0
a = 8; b = -1050; c = +3;
Δ = b2-4ac
Δ = -10502-4·8·3
Δ = 1102404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1102404}=\sqrt{4*275601}=\sqrt{4}*\sqrt{275601}=2\sqrt{275601}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275601}}{2*8}=\frac{1050-2\sqrt{275601}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275601}}{2*8}=\frac{1050+2\sqrt{275601}}{16} $
| a+7/3+2/3-11/2=a+1/2a | | -5-7b=-3(4b+5) | | 7x+18-x=6x+18 | | b+(b+15)+90+(2b-90)+3/2b=650 | | 150m-75m+53075=55550-200m | | 7k-10=-8-4(k | | 8)1/2x-2)=1 | | 4x-3(4x-8)=-11 | | 15-0.18c=12.66 | | 1/4x+10=-12 | | x^2+16x+96=5 | | 5+4x=3+14x | | t–17=-2 | | 55x+60(7-x)=405 | | -2x-(2x-5)=1-8x | | -5x=-15/4 | | 6r-54=2r-20 | | 52+180p=2(26+90p) | | -3x/4=-12 | | 28=40-u | | 5x2+14x-3=0 | | 5/9v=-25 | | 2x-5=x-1+3 | | -5-g/6=15 | | 3(w-4)-(5w-6)=-18 | | 2r+12-4r=26 | | 11x+9-8x-6=11x-8x+9 | | a−29=23 | | 2*(x+6)0=4*(x+2) | | n+(-8)=-4 | | -14/9=-7x | | 5x-8-3x=2 |