If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+(b+45)+3/4b+90+(2b-90)=540
We move all terms to the left:
b+(b+45)+3/4b+90+(2b-90)-(540)=0
Domain of the equation: 4b!=0We add all the numbers together, and all the variables
b!=0/4
b!=0
b∈R
b+(b+45)+3/4b+(2b-90)-450=0
We get rid of parentheses
b+b+3/4b+2b+45-90-450=0
We multiply all the terms by the denominator
b*4b+b*4b+2b*4b+45*4b-90*4b-450*4b+3=0
Wy multiply elements
4b^2+4b^2+8b^2+180b-360b-1800b+3=0
We add all the numbers together, and all the variables
16b^2-1980b+3=0
a = 16; b = -1980; c = +3;
Δ = b2-4ac
Δ = -19802-4·16·3
Δ = 3920208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3920208}=\sqrt{16*245013}=\sqrt{16}*\sqrt{245013}=4\sqrt{245013}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1980)-4\sqrt{245013}}{2*16}=\frac{1980-4\sqrt{245013}}{32} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1980)+4\sqrt{245013}}{2*16}=\frac{1980+4\sqrt{245013}}{32} $
| 8m+10=10m-8 | | x=38*8 | | 4x^2=8x-45=0 | | 10x+7x=125+230 | | 1/265=2/h | | 1/265=h/2 | | 5t-9=(t+1) | | 3x-x=5=2(x+2)-9 | | -2/3x+7=5 | | -5-3y=7-7y | | 16b^2+40b+25=0 | | 5-m/7=19 | | 8=a/5-4 | | 1-8(x-5)-2(x-3)=10-4(2x-3) | | -f-6=2f | | -2n=-8-n | | 3=6(2+9m) | | -2n=-8−n | | -2(-1*c-12)=-2*c-12 | | 8-10w=9+6(3-2w) | | -9+4y=y | | 4x-3(3x-9)=17 | | 1/2*h+1/3*(h-6)=5/6*h+2 | | (x-3)^2=(1)^2 | | 15+3x=13x | | -10q=-8-8q | | 1/2*h+1/3(h-6)=5/6*h+2 | | x-3(2x+7)+8=19 | | 6n+2n-12=68 | | 20-2h=5h-5 | | -7k=6-5k | | N=26=28-2n |