b+10.8=124/5b=

Simple and best practice solution for b+10.8=124/5b= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+10.8=124/5b= equation:



b+10.8=124/5b=
We move all terms to the left:
b+10.8-(124/5b)=0
Domain of the equation: 5b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
b-(+124/5b)+10.8=0
We get rid of parentheses
b-124/5b+10.8=0
We multiply all the terms by the denominator
b*5b+(10.8)*5b-124=0
We multiply parentheses
b*5b+54b-124=0
Wy multiply elements
5b^2+54b-124=0
a = 5; b = 54; c = -124;
Δ = b2-4ac
Δ = 542-4·5·(-124)
Δ = 5396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5396}=\sqrt{4*1349}=\sqrt{4}*\sqrt{1349}=2\sqrt{1349}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{1349}}{2*5}=\frac{-54-2\sqrt{1349}}{10} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{1349}}{2*5}=\frac{-54+2\sqrt{1349}}{10} $

See similar equations:

| y=(2y+1)/5 | | 5–9x=–76 | | 6(-2x+1)+4(2x-5)=30 | | 6|x-2|=24 | | 5x+18/8=x+8/6 | | 2–8x=–46 | | b+10.8=124/5 | | |6t|=54 | | 15=-5z=10 | | 11-4g=7 | | c-3.3=7.8 | | x4+6=10 | | 3/17=b/102 | | 1/4(1-4x)=3-x | | 183=52-u | | 3(5m-4)=33 | | 10-17=8x+1 | | 15-8m=-4m-2(2m+3) | | 3x+4x+147=180 | | 3n+4=5+2n | | 2(3y-5)=2(y=11)-4 | | 15-8m=-4-2(2m+3) | | -3y+12=78 | | x+125=600 | | −24−12b=-24 | | -1/2-1/3y=2/5 | | -56=-6t-8 | | 9x^2+8=8x^2+44 | | 1^4(4a+1)=1^2a | | 35=4*v-9 | | (x)=4x-10 | | 1.60=0.10x+0.80 |

Equations solver categories