b+2/3b+(b+45)+(2b-90)+90=540

Simple and best practice solution for b+2/3b+(b+45)+(2b-90)+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+2/3b+(b+45)+(2b-90)+90=540 equation:



b+2/3b+(b+45)+(2b-90)+90=540
We move all terms to the left:
b+2/3b+(b+45)+(2b-90)+90-(540)=0
Domain of the equation: 3b!=0
b!=0/3
b!=0
b∈R
We add all the numbers together, and all the variables
b+2/3b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+2/3b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*3b+b*3b+2b*3b+45*3b-90*3b-450*3b+2=0
Wy multiply elements
3b^2+3b^2+6b^2+135b-270b-1350b+2=0
We add all the numbers together, and all the variables
12b^2-1485b+2=0
a = 12; b = -1485; c = +2;
Δ = b2-4ac
Δ = -14852-4·12·2
Δ = 2205129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1485)-\sqrt{2205129}}{2*12}=\frac{1485-\sqrt{2205129}}{24} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1485)+\sqrt{2205129}}{2*12}=\frac{1485+\sqrt{2205129}}{24} $

See similar equations:

| -8-3x=1x-4(2+1x) | | 9(2-3x)-29=-8x-(x-23 | | 0=n/4-2 | | -4+10=2x+22 | | 0.8+0.8x=x+0.9 | | 5.x=12+4.7 | | 0.8+0.8x= | | 0.8+0.8x= | | X=3+1/4x | | 9=0.42(a)-13.91 | | -10x+12=-98 | | 2b^2-b+4=b+6 | | -3=n-5/2 | | -4(u+8)=4u+8 | | Y-45x+20=0 | | 4x+(-8)=-16 | | X+7+2x+19=80 | | 3=5−2d | | 2j=19 | | 25+x=71 | | 5d+28=9d+11d | | -3n+5n=6 | | 5x+66=12x+52 | | x/6-3.6=-22.8 | | 4​(a-4​)=8a-​(4a+16​) | | -3(4+r)=6 | | v/3+5=7 | | 4x+.5(4x+12)=2( | | 5p=7+28 | | 110=1/2h(4+7) | | 3+3/2x+4=4+5/2x | | 4/5*x+5=2x |

Equations solver categories