If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+3/2b+(2b-90)+(b+45)+90=540
We move all terms to the left:
b+3/2b+(2b-90)+(b+45)+90-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(2b-90)+(b+45)-450=0
We get rid of parentheses
b+3/2b+2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 57(32)=57+b | | 5.x-6=29 | | 720=x+120+120+100(x+10) | | 0.25+0.75(10-x)=3 | | 3.5x-80=360 | | (2x+2)+(3x8)=90 | | A(b)=57+b | | x+3+x=3+2x-6+2x-6=26 | | -3x+65=180 | | -4/3u-1/4u=-1/3-3/2 | | 17/12=5x/6 | | 4+7p=-7p-8(2p-8 | | 1.5+t=0.50 | | (17/12)=(5/6((x) | | -3x=5=2 | | 60+42.95x=25+49.5x | | -2x=2x+2+3 | | 3x+7+2x+3+70=180 | | -2x-6=15 | | (x/2)+(x/6)=-4 | | 3=3y-13 | | -147=-3(7b-7) | | 3+3(-6n+5)=5n+18 | | 13-7x÷(4+2)^2=20 | | 1=7(3)+b | | x=(87587546.23742913576+(5647.34325-34732894.59437863)+5)+-5754877837.23 | | 5(2n+-4)=2(n+6) | | 1.34x=-21.34 | | -1=4(5)+b | | v2-14=18 | | -4k+8+3k+3=7 | | x−9)(x+5)=0 |