b+3/2b+(2b-90)+(b+45)=450

Simple and best practice solution for b+3/2b+(2b-90)+(b+45)=450 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+3/2b+(2b-90)+(b+45)=450 equation:



b+3/2b+(2b-90)+(b+45)=450
We move all terms to the left:
b+3/2b+(2b-90)+(b+45)-(450)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We get rid of parentheses
b+3/2b+2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 21(x+1)=2(4x+5) | | 4x-4=28x-2 | | 8+4x/3=4 | | X=4,y=-3 | | -9h−10+1=9+9h | | 8+4x=43 | | 4x-1+5x+3=74 | | -11+23=-4(x+8) | | 5x+x-2=100-180x | | 0.6a-0.5a=4.5 | | 7-4(2w+1)=9w-4(9+2) | | (5x-2)=180 | | -d/5=9 | | 21^x=81 | | 4y-y=-36 | | 12m=78+6m | | w=9.5-1.9 | | 4a+3(a+5)=57 | | 4a+8=3a+18 | | 2(b-4)-1=6(-8+ | | 4a+6=3a+18 | | -d/9=5 | | X-(x+10)=0 | | 9m=54+3m | | 11×+4y=-12 | | -10=-15+m | | 5c+3(c+6)=82 | | -3(x-3)-9=0 | | 11=x/7.68+8 | | 4/d+3=7/2d | | 3a+18=4a+8 | | 300x=150x+2-3x |

Equations solver categories