If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+3/2b+(2b-90)+90(b+45)=540
We move all terms to the left:
b+3/2b+(2b-90)+90(b+45)-(540)=0
Domain of the equation: 2b!=0We multiply parentheses
b!=0/2
b!=0
b∈R
b+3/2b+(2b-90)+90b+4050-540=0
We get rid of parentheses
b+3/2b+2b+90b-90+4050-540=0
We multiply all the terms by the denominator
b*2b+2b*2b+90b*2b-90*2b+4050*2b-540*2b+3=0
Wy multiply elements
2b^2+4b^2+180b^2-180b+8100b-1080b+3=0
We add all the numbers together, and all the variables
186b^2+6840b+3=0
a = 186; b = 6840; c = +3;
Δ = b2-4ac
Δ = 68402-4·186·3
Δ = 46783368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46783368}=\sqrt{36*1299538}=\sqrt{36}*\sqrt{1299538}=6\sqrt{1299538}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6840)-6\sqrt{1299538}}{2*186}=\frac{-6840-6\sqrt{1299538}}{372} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6840)+6\sqrt{1299538}}{2*186}=\frac{-6840+6\sqrt{1299538}}{372} $
| 2b-6=b+1 | | 2x-20°+3x=180° | | -3(x+3)+5x=-39 | | 7x+2(x+7)=39 | | 3.40+0.85x=5.7 | | -14x—=-10–45 | | 25x^2+40x=-20 | | 2g=7+5 | | w/8=-6 | | -2x-22=2(x-3) | | 7p-70=10p-60 | | 5-3p-13p=1 | | n-8n=7 | | Y=-x3-10 | | -2(6n-1)=98 | | 2x-16=-9x+6 | | (5x-6)+x=162 | | 19-x/2=12 | | (5x-3)+x=162 | | 2.2(r-8)+4=1.8 | | 3x+17=2(1-x) | | 55,000x+2,500=62,000+2,000 | | -7+23=15x-5-14x | | 5(a-1)-(1-a)=8 | | 7a+5=6a+4 | | 17x+9=10x+30 | | 1x+0=3x+7 | | -t+t=t-19 | | 8x-16=8x-26 | | -8-7x=-2(4x+2) | | 2x^2+9x+207=50-13x+x^2 | | -3=-1+x/8 |