b+3/2b+(b+45)+(2b-90)+90=520

Simple and best practice solution for b+3/2b+(b+45)+(2b-90)+90=520 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+3/2b+(b+45)+(2b-90)+90=520 equation:



b+3/2b+(b+45)+(2b-90)+90=520
We move all terms to the left:
b+3/2b+(b+45)+(2b-90)+90-(520)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+3/2b+(b+45)+(2b-90)-430=0
We get rid of parentheses
b+3/2b+b+2b+45-90-430=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-430*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-860b+3=0
We add all the numbers together, and all the variables
8b^2-950b+3=0
a = 8; b = -950; c = +3;
Δ = b2-4ac
Δ = -9502-4·8·3
Δ = 902404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{902404}=\sqrt{4*225601}=\sqrt{4}*\sqrt{225601}=2\sqrt{225601}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-950)-2\sqrt{225601}}{2*8}=\frac{950-2\sqrt{225601}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-950)+2\sqrt{225601}}{2*8}=\frac{950+2\sqrt{225601}}{16} $

See similar equations:

| 5x-9=(-4+x)x-3 | | 2x^2^6=0 | | 1.9s-15.81-18.7s=4.99-14.8s | | 5x+1°8x+10°=180 | | 45+(2k+k)=180 | | 15/20=6/y | | P(n)=3/n-1.2 | | (2x-1)(4x-1)=8 | | 8-2(x-3)=30 | | 3-11x=-11 | | (–7)(x–9)=42 | | 3^x=(78732/4) | | 2x^2+6x+10-180=0 | | x=21/13+4 | | 8c-0.7=1.8–2c | | y=2×5+14 | | 6+4x+6=40 | | 4x-(2x+14)=-4 | | 4(x-5)=2(x+3 | | 10y=15/13 | | 4)-11=-y+6 | | x+17=19-x | | x–18=27 | | 4f+f+6f=0 | | √5x+4=2x+2 | | 3)n/10-9=-10 | | 15x=−9/13 | | 5x=5-30x | | X-7-4x=0 | | (9x-6)/(x-2)=12 | | 2n+5+3n=0 | | 5x/1-6x=5 |

Equations solver categories