b+3/2b+90+(b+45)+(2b-90)=540

Simple and best practice solution for b+3/2b+90+(b+45)+(2b-90)=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+3/2b+90+(b+45)+(2b-90)=540 equation:



b+3/2b+90+(b+45)+(2b-90)=540
We move all terms to the left:
b+3/2b+90+(b+45)+(2b-90)-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 9n-5=6n+5 | | 6x-89=71 | | 7s-18=-4 | | 9n+5=6n+5 | | 7x-3+5x+9=90 | | x=49.95+3.75 | | 2x^2+4x-286=02x | | 2y=10X+2 | | 4n-2/3=-92 | | 5(1-x)-(6x+2)=8+9(x-5) | | 16+m=36m= | | 4-3e=3-2e | | 13x+1=8x | | |3x+2|=5-x | | 2/3-4n=-92 | | 4=-0.375+y | | 44s+66=23−33 | | 3m=4m-3 | | 2/3(12x-27)=-15 | | 11÷4a-3=-1 | | u-0.6=-0.5 | | 3.8x-(-1-9.7)x=2.6+13.3x | | 9w+11=47 | | 12=b/3+2 | | 11(z+1)-4(z-4)=2(z-2)+4(z-4) | | 7x-8x=14 | | x=-2-1/4 | | M-2=m-13 | | k-4/6=7 | | 5x+2x+90=180 | | 3n-10=-28 | | 4=4(x+10£ |

Equations solver categories