If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+b+45+90+(2b-90)+3/2b=540
We move all terms to the left:
b+b+45+90+(2b-90)+3/2b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
2b+(2b-90)+3/2b-405=0
We get rid of parentheses
2b+2b+3/2b-90-405=0
We multiply all the terms by the denominator
2b*2b+2b*2b-90*2b-405*2b+3=0
Wy multiply elements
4b^2+4b^2-180b-810b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 180=x+(x-76) | | (3x-25)+(2x-5)=180 | | (X-3)-2=6-2(x+1( | | 8+2x+7=4x+3 | | 2(x+3x)=1-25 | | 25/x=6/2.4 | | (10x+10)(4x+20)=0 | | -3(-9x-4)-11=-6(x-12)-10 | | -148+8x=62+14x | | 5.9=1.3x+0.7 | | -2x-8=-11x-6 | | (3e^2-5e+7)(6e+1)=0 | | -63+15x=98+8x | | 3x+8=20x+2 | | -55+2x=-x+35 | | 6(x+3)=3(3x-8) | | 2(2m+2)=-(m-6)+4m | | 9w-5+2(2w+5)=-2(w+2) | | 56p=-89 | | X²+2x-244=0 | | 2(2x-10=x | | x/2-2x/3=2 | | -60+6x=11x+30 | | -3b(b-1)=-6(1+2b) | | -(12-2s)-(6s+1)=31 | | 4(a+2)-2a=10+3(a-3)1 | | 14x-133=5x+164 | | 0.25x+0.75x(10-x)=3 | | 7x+21+10x-3-180=x | | 12×+4+2x=39 | | 90-5x+103=2x+14 | | -134-21a=-7a^2-8 |