If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2+20b=80
We move all terms to the left:
b2+20b-(80)=0
We add all the numbers together, and all the variables
b^2+20b-80=0
a = 1; b = 20; c = -80;
Δ = b2-4ac
Δ = 202-4·1·(-80)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{5}}{2*1}=\frac{-20-12\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{5}}{2*1}=\frac{-20+12\sqrt{5}}{2} $
| x/3-8=16 | | 5×-2y+4=4×-3×+6 | | 7x=4+5x+3+2x+5= | | 130/2=390/x | | 10x^2=6 | | 1/3×d=6 | | 1.5+6x=5x+3.5 | | 12+3n=28 | | 976-x=-48.2 | | 9=36x+12 | | 4/32=10/2/x | | 8(z-6)=4+2z | | 3x+12=4x+15 | | 2b-2/5=b-3/15 | | 1/2x-3=23/4x | | 45+(30x)=165 | | 12x-2+10x+6=180 | | 7x+54+14x+84=180 | | .75=a+5 | | 5x+330=15x+50 | | 6z^2+2=56 | | 6-(4p-2)=p-1 | | 1=1.6x^2 | | -4(x-4)^2+2=74 | | 4x+7+2x=67 | | 5x^2+4=30 | | -8-5x=87 | | 4+7+2x=67 | | 1200=-4a | | 56=8(x+9) | | 4y-6+y+26=7y+20-5y | | 3×+9+5=6×+7+3x |