If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2+4b=3
We move all terms to the left:
b2+4b-(3)=0
We add all the numbers together, and all the variables
b^2+4b-3=0
a = 1; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·1·(-3)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{7}}{2*1}=\frac{-4-2\sqrt{7}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{7}}{2*1}=\frac{-4+2\sqrt{7}}{2} $
| 6x+3-7=50 | | 6x^2+5x+13=0 | | 7x-3(x-2)=-6 | | x^2=-8x+4 | | 4x-5=2(x-5)+7 | | C=7/2(k-29) | | k/25=4 | | 3p=14.19p= | | 4x/15=500 | | 50+2x+(x+25)=180 | | 7-4f=-5 | | 4(5x-4)=1=-5 | | C+3=24c= | | b+6=19b= | | X+(2x-4)+(x+2)=114 | | -r/2+-3=6 | | 9d+4-2=32 | | 6=4k+9 | | 9d+4−2d=32 | | 2=5y+5 | | 7x2=4x-9 | | 13=3h+9 | | f–8=45 | | 3b+12=13 | | 3g-2=15 | | 6y-3y=167 | | 2p2+3p2+4p−12=5p2+4p−12 | | |2/5x+1|=9 | | 4s+13=14 | | 6=6q+2 | | 26=7(g−9)+122 | | 14x+8=12x−11 |