If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2+b=0
We add all the numbers together, and all the variables
b^2+b=0
a = 1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*1}=\frac{-2}{2} =-1 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*1}=\frac{0}{2} =0 $
| 4=0.25(w-4.23) | | |4x-9|=-13 | | 8-8d=-10-10d | | 2(3x+7)=49 | | -8y=-2y-6 | | (6x+19)=x+180 | | 16=-a/4+14 | | X+5+x+10+x+12=90 | | 10-5j=-8-7j | | 2,4x=3,6 | | 5-1/3x=3/5x-2 | | 6y+5+10y-7=180 | | b2-9b+14=0 | | 13y-3y+10=y+55 | | 1/5x-15=2 | | -2.8a=4.2 | | 8×n=9 | | 4p-2349=2*(14-5) | | 20y+20=20 | | -3s=-4s-3 | | -16-y=15 | | 6x+19=x+180 | | 4p+7=31 | | x-2(-9)=14 | | 3u+20=41 | | -5+2x=22 | | 9x-5x18=2x+34 | | -x=-13x+36 | | -9-2y=14 | | 4.4x-4.6=30.6 | | 6.4x=-0.4 | | -8-t=5-t |