If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2/4+35=61
We move all terms to the left:
b2/4+35-(61)=0
We add all the numbers together, and all the variables
b2/4-26=0
We multiply all the terms by the denominator
b2-26*4=0
We add all the numbers together, and all the variables
b^2-104=0
a = 1; b = 0; c = -104;
Δ = b2-4ac
Δ = 02-4·1·(-104)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{26}}{2*1}=\frac{0-4\sqrt{26}}{2} =-\frac{4\sqrt{26}}{2} =-2\sqrt{26} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{26}}{2*1}=\frac{0+4\sqrt{26}}{2} =\frac{4\sqrt{26}}{2} =2\sqrt{26} $
| 212.325x=4871-9 | | f(-10)=4x+6 | | (5x+7)+(3x+3)=90 | | 65x-39=599 | | 4q-5+5q+5+90=180 | | (15x-4)+(4x+5)+(65)=180 | | 2(x-1)=10x+4x | | -2-17m=10 | | 2x^2+8x+58=0 | | 6/11x=10-4/5x.x=0 | | 154=-x+286 | | 162-x=16 | | 3z2=9 | | 20y-3=11y+8 | | 18y-6=2y+8 | | 12y-4=4y+3 | | 6x-12=2(x+2 | | 2(5x-15)=5x+5 | | (x+1)^2=-4 | | 21-5x=53-9x | | -2d=-4 | | y=900+0.5y | | y=900+0.05y | | (6y+29)+(8(0.75y+18.75)+1)=180 | | x^-13x=-40 | | (x+8)^=0 | | 2x^+15x-108=0 | | 5c+3c=0 | | 7x-1=170 | | x/3+11=1 | | x/4-21=4 | | -7-7n=-9(n+3) |