If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=10
We move all terms to the left:
b2-(10)=0
We add all the numbers together, and all the variables
b^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 10+g=-120 | | 82=5v-13 | | 1/5(15x+30)=81 | | 3x-22=8x | | 4x+2,9=-2x-5,1 | | 9x+5=7x+21 | | 15v=72+6v | | x^-2=4 | | 129=-41-10x | | x+4/2x-1=2/5 | | − | | 2n+6=-22 | | 3x+9=33 | | -4(2-2x)+5+2x=3 | | 4(x+-5)=-6 | | 7(x+2)=42 | | 8x+3=-37 | | 1/10x-1/4x=21 | | z−2/3=1/8 | | 3x+10=-23 | | 15-x+17=x+5 | | 3(x+-1)=-9 | | 11x+7=-26 | | y/5+15=19 | | m/2=1.14 | | x-x+17=x+5 | | 4x+11=-21 | | 1-x+17=x+5 | | X2(x+2)2=143 | | m2=1.14 | | 8x-4=-60 | | 4/s=12/5 |