If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=169
We move all terms to the left:
b2-(169)=0
We add all the numbers together, and all the variables
b^2-169=0
a = 1; b = 0; c = -169;
Δ = b2-4ac
Δ = 02-4·1·(-169)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-26}{2*1}=\frac{-26}{2} =-13 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+26}{2*1}=\frac{26}{2} =13 $
| x=12+8x/13 | | -2t^2-20t-30=0 | | x-9=-2+3 | | 11^-3y=2 | | x/3+x/2=7/9 | | 3x-26=-2x+54 | | 3/4p=1/5 | | x^2-2x+384=0 | | 10=(3^x+5)-2 | | -7b−7=-6b | | -6v+1=1−6v | | -6h+10h=4h | | -9+7q=6q | | 9r+9=9r | | 40,000-2x=0 | | x2=−81 | | 36w-5=1.8 | | -3^2-36t-100=0 | | -2t^2-36t-100=0 | | x=40/5 | | (s+6)(s-2)=0 | | 2t^2-20t-30=0 | | x^2-2x+396=0 | | -7x;=x-10 | | 3y−8=−5y+16 | | -(t-1)=-12×3 | | f(-1)=4-3 | | 2(w-9)=7w-33 | | n+0.3=-4.1 | | (5(x-10))/2+14=19 | | (4w-5)(2+w)=0 | | 5x+2×=21 |