If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=196
We move all terms to the left:
b2-(196)=0
We add all the numbers together, and all the variables
b^2-196=0
a = 1; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·1·(-196)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*1}=\frac{-28}{2} =-14 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*1}=\frac{28}{2} =14 $
| x/5+20=27 | | 169=d^2 | | 25x-25=50 | | 7(x+7)-6(3-3x)=56 | | 2(5−d)=-2d | | 25x-25x=50 | | 2x+4=5x+46 | | 5(y-5)+3=48 | | -45=-3/u | | X=12x+18 | | 26=y/5-14 | | -4(2-5v)-3(-1-2v)=73 | | -x/9=33 | | 14y+6-8y=4(y-3 | | -y−10=y+6 | | −11x+9=−2x+45 | | 3(3r+4)=r | | -8=-8p+13+9p | | b-5b=30 | | -8=-8p+139p | | 21/5x=147 | | 2/6x=6 | | -12x-12(11-10x)=-12(5-12x) | | 96+2=x+12 | | -3(7-8x)-5(8x+8)=35 | | 6n+9-4n=-3 | | b+3b=21 | | 15=3p-5-2p | | -(5+k)=-9 | | x-210000=0.1x | | 1.1+1.2x-5.4=10- | | 144=p^2 |