If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=255
We move all terms to the left:
b2-(255)=0
We add all the numbers together, and all the variables
b^2-255=0
a = 1; b = 0; c = -255;
Δ = b2-4ac
Δ = 02-4·1·(-255)
Δ = 1020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1020}=\sqrt{4*255}=\sqrt{4}*\sqrt{255}=2\sqrt{255}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{255}}{2*1}=\frac{0-2\sqrt{255}}{2} =-\frac{2\sqrt{255}}{2} =-\sqrt{255} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{255}}{2*1}=\frac{0+2\sqrt{255}}{2} =\frac{2\sqrt{255}}{2} =\sqrt{255} $
| 1/3b-5=6 | | 10a–2=4a–14 | | 2+3/4n=11 | | (13^6)^4*13^5=13^k | | 2x-10-9x+1=3x+18 | | −7=j/2 | | −7=j2 | | -6.53-5.2s=-4.03-2.7s | | 10+6r+8=10r+2 | | 2z/9-4=-4 | | 2g(4g+3)+g(g=7) | | 2z/9-4=4 | | 3-6j+8=-3-8j | | X+x+x+1=10 | | -2y+5=2y-3 | | 3x68/8=x+6 | | 10m+6-4m=-10+8m | | -4+3k=4k-5 | | 2x+10=2x+10=64 | | 3-4t=-7-5t | | 3x+x–25=3 | | 9+6f=-7+10f | | -5(x-5)=2-4(-1) | | 164x=31 | | 9+6f=–7+10f | | -5-9j=-6j-5 | | Y=-2(x-2)^2+4 | | x24+7=8x3 | | -8+4g+6=5g+8 | | 5-4(x-2)=2x | | 5x^2-8x+2x-7=0 | | 2x+2x-1=19 |