If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=48
We move all terms to the left:
b2-(48)=0
We add all the numbers together, and all the variables
b^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $
| 4x+80=8x+16 | | a2=26 | | x/12=3=7 | | e2=144 | | d2=24 | | c2=17 | | b2=5 | | a2=14 | | x/7=-29+40 | | e2=121 | | d2=81 | | c2=64 | | b2=169 | | x=12+8x/13 | | -2t^2-20t-30=0 | | x-9=-2+3 | | 11^-3y=2 | | x/3+x/2=7/9 | | 3x-26=-2x+54 | | 3/4p=1/5 | | x^2-2x+384=0 | | 10=(3^x+5)-2 | | -7b−7=-6b | | -6v+1=1−6v | | -6h+10h=4h | | -9+7q=6q | | 9r+9=9r | | 40,000-2x=0 | | x2=−81 | | 36w-5=1.8 | | -3^2-36t-100=0 | | -2t^2-36t-100=0 |