c+7=5c(3+4c)

Simple and best practice solution for c+7=5c(3+4c) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c+7=5c(3+4c) equation:



c+7=5c(3+4c)
We move all terms to the left:
c+7-(5c(3+4c))=0
We add all the numbers together, and all the variables
c-(5c(4c+3))+7=0
We calculate terms in parentheses: -(5c(4c+3)), so:
5c(4c+3)
We multiply parentheses
20c^2+15c
Back to the equation:
-(20c^2+15c)
We get rid of parentheses
-20c^2+c-15c+7=0
We add all the numbers together, and all the variables
-20c^2-14c+7=0
a = -20; b = -14; c = +7;
Δ = b2-4ac
Δ = -142-4·(-20)·7
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{21}}{2*-20}=\frac{14-6\sqrt{21}}{-40} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{21}}{2*-20}=\frac{14+6\sqrt{21}}{-40} $

See similar equations:

| 6(y+8)=(2y-7) | | 12(2x+1)=4(6x+3 | | 2.5/x=2/7 | | 0.5x-0.3(40+x)=0.3(50) | | q+5/9=1/6q= | | 840=150+0.12(a-1250) | | -2c+8|=|10c| | | 6h+3.7=5.1 | | -2(7-y)×4=-4 | | (2x-8)+(2x+13)=180 | | -3/2-k=-1/22 | | 3(a-6)=-5a(7=3a) | | (x+)(x-)=x2-7x-78 | | 6x-20=2x×4 | | 5x-7+6x-16=180 | | 8x+1=(-x)-1 | | -8y+4=-3-8y | | 35-20x=-7-14x | | 15+0.50m=25m+0.25 | | 23-47=3(x-2)-3 | | 3a+(2a-5)=13-2(a+20 | | -2+x/2=9 | | x/4+21=18 | | 40k+6040k+60=30k+10030k+100​ | | 2.5x-0.5=-5.5 | | -250+-25x=225x | | m=-m | | -19m=-185 | | 2x+7=21-5x | | -250+-24x=225x | | 5/6x-2=10+x | | 79=-8x^2 |

Equations solver categories