If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c/502+1202=c2
We move all terms to the left:
c/502+1202-(c2)=0
We add all the numbers together, and all the variables
-1c^2+c/502+1202=0
We multiply all the terms by the denominator
-1c^2*502+c+1202*502=0
We add all the numbers together, and all the variables
-1c^2*502+c+603404=0
Wy multiply elements
-502c^2+c+603404=0
a = -502; b = 1; c = +603404;
Δ = b2-4ac
Δ = 12-4·(-502)·603404
Δ = 1211635233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1211635233}=\sqrt{9*134626137}=\sqrt{9}*\sqrt{134626137}=3\sqrt{134626137}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{134626137}}{2*-502}=\frac{-1-3\sqrt{134626137}}{-1004} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{134626137}}{2*-502}=\frac{-1+3\sqrt{134626137}}{-1004} $
| 500=3.14*r^2*13 | | 4=4+8m | | 3x-9=2x+79 | | 6t=88- | | 2(x+1/6)=1/2 | | 3(4n-1)=27 | | 6g-4=3g+15 | | 7x+10(9)=36 | | 7x+10(2x)=36 | | 10.1=t+7.2. | | 5(a+7)=31 | | p=1+1/2 | | 3n+3=25+n | | 3.78=120/u | | 5.2=16.4-7u | | v/4+1=-9.24 | | 10.4+x/8=-2.4 | | 55+47+x=180 | | 8=9+p/15 | | 57+76+x=180 | | 38=4x-14/2 | | 56=10-2x/2 | | 6x+25/2=79/2 | | 15e=180 | | 2(4x+6)=108 | | 3(2x+8)=84 | | 1/2a+19=25 | | 25-x=60 | | 3x(x+1)=4x.1 | | 3x(x+1)=4x | | (5x-20)+(3x+40)=180 | | 10.8=1.8+0.4c |