If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2+11c+30=0
We add all the numbers together, and all the variables
c^2+11c+30=0
a = 1; b = 11; c = +30;
Δ = b2-4ac
Δ = 112-4·1·30
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*1}=\frac{-12}{2} =-6 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*1}=\frac{-10}{2} =-5 $
| 1x-1=2x+1 | | 16^(3x)=8^x+6) | | 11/7b=4 | | y^2+11y-196=0 | | 7x+44=9(x+4) | | 7(w+3)=2w+26 | | 3x+1.4=2.9 | | 0=0.03x(x-100) | | 2w-2=4(w+4) | | 1x-2=3x+12 | | 25/12=x/12 | | 2x-2=1x+7 | | 26=7(v+6)-5v | | 15+x/3=12 | | -34=6(y-8)-4y | | 1x+18=5x+6 | | | | 4=3w+4(w+8) | | 216+43.2=x | | 5x+19=1x+7 | | 4/13=2b/13=6b/26 | | -11+x/11=-13 | | y/4=7/17 | | 1x+9=2x+4 | | 2x+3x+7+6x-3=180 | | 1x+9=2x=4 | | (e/3)=7 | | 7+4c=3+5c | | -7(x-5)=5(4-x) | | -56=-10x+4 | | 7=6-4e+4e | | -6(3-4x)=4x |