If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2-4c=0
We add all the numbers together, and all the variables
c^2-4c=0
a = 1; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*1}=\frac{0}{2} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*1}=\frac{8}{2} =4 $
| 15-5x7x=3x-15 | | a/2+3=10 | | -19z-(-12z)-4z=11 | | 5x−6=39 | | 21x^2-5x+1=0 | | -19z–-12z–4z=11 | | x+5=-2(x-2) | | 550e+250=110+661e | | 8r-6r+4=6r+4-r | | 4x^2+5=29 | | g-5/3=3 | | -25+m÷3=14 | | (X+2)/2=1-(x+6)/7 | | 8h+4-20h=18-11h | | 2g+2g+6g=20 | | 12+y=26;14 | | (X2+2x-5)-(3x+2)=x2-1 | | 3a+a=a+8 | | t^2-4t-2=0 | | 11z-18z-(-6)=-15 | | 50=2(y+4) | | 11=3r−10 | | -5n-n=-24 | | 2−(4x^2+x)=0 | | -8x-x8=-80 | | x-10=-2x-4 | | 5x=(x+4)+8 | | 7y-5y-2=10 | | X/5+10=3x/5+12 | | ^x2-36=8 | | 18x-1=2(9x-5) | | 5n-8+2=9 |