If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2-7c-10=0
We add all the numbers together, and all the variables
c^2-7c-10=0
a = 1; b = -7; c = -10;
Δ = b2-4ac
Δ = -72-4·1·(-10)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{89}}{2*1}=\frac{7-\sqrt{89}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{89}}{2*1}=\frac{7+\sqrt{89}}{2} $
| 21+39+x=180 | | z-2=1.24 | | x+50+x-48=x | | 39+106+x=180 | | 350=1/7x | | 56x+824x-52=22(40x+10) | | -3x-3+7x=-3 | | 3x+9=x^2-20 | | x+x+12+2x+20=180 | | 2x²-16x+14=0 | | n+-4=-12 | | z−2=1.24 | | 5/9+n=2/3 | | 155=5(7x+3) | | 4x+2+80+50=180 | | -2+3x-2x=6 | | h+7.3=8.31 | | n+–4=–12 | | 25=7x+11 | | 2x+5+5x=84 | | 6x+8+6x=104 | | 36/q=28/(16-q) | | x-32+x-31+x=180 | | 84=6x+12+10x-24 | | 16.31=y+4 | | -4n-6=-22 | | 41+82+3x=180 | | -3x+1-6x=1 | | 3x+9=x*x-20 | | 41+82=3x | | 56x+824x-52=22(40x+10 | | -7x-4-3x=-74 |