If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2=32
We move all terms to the left:
c2-(32)=0
We add all the numbers together, and all the variables
c^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $
| 4t+6=15t-2 | | 3/5y-1/10y=y-5/2 | | 95+13m=199 | | 4(6-4x)=6(3-4x) | | y+y=180° | | 95+35m=199 | | 4x-5(x-2)=11x+4 | | -(2x+2)-(-3x-5)=3 | | 21+2y+7+90=180 | | 7+9x+x=50 | | -5(r+9)=-44 | | 3(6-4x)=4(3x-6) | | 4=7x-2 | | 8u+32=6(u+3) | | -2x-1=-5x+3+3x | | 7(u+1)=2u-33 | | -3x+9=-6(x-5) | | 9x+3=19-2x | | 0=t^2+t+12 | | -3x+9=-6(x+5) | | 11x+7/4=3x+1 | | z-5=+5 | | 7x2(5x-16=70 | | 23.7-3y=4.5 | | 80=(l^2)/2+392l | | 7x+4=3x+4(x+1) | | 80-l^2/2-392l=0 | | 80=l^2/2+392l | | 7x-2(3x+16=-23 | | 5(x-3)=3(x=4) | | 5x=5=11-x | | -x+7-66=19-7x |