If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2=35
We move all terms to the left:
c2-(35)=0
We add all the numbers together, and all the variables
c^2-35=0
a = 1; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·1·(-35)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*1}=\frac{0-2\sqrt{35}}{2} =-\frac{2\sqrt{35}}{2} =-\sqrt{35} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*1}=\frac{0+2\sqrt{35}}{2} =\frac{2\sqrt{35}}{2} =\sqrt{35} $
| -5*a/(-10)*10=100 | | 3+7v=8(5-2v) | | 3(2x-3)+x(+x+36)=103 | | 3y-6=13 | | 1n^2+2-4=77 | | -8z+10+8z=10 | | (-2)+a-2=-7 | | 1x+16=24 | | 6v-24=12 | | 60=-7y+4 | | p+(-3p)=-16 | | -6h+7-2h=34 | | t+49=50 | | 21x-x-34=6x+2x-7x+4 | | -6h+7-2h=33 | | 4(r+5)=7-(-4r-13) | | 3x-x=-4x | | (6x+6)+(4x)=146 | | (-3)*y+3=6 | | -6x+5=8+6x | | (-45)/y=-5 | | y+39=13y+3 | | a+(-5)+(-5)=-10 | | 4+f=8f-7(f+8) | | (2x-2)^2+4=18 | | 5(7-9c)=-15 | | 3x+9=x+33 | | X/2-1=2x | | 3(y+2)=-30 | | 3c-14=2c | | 11x+32-7x=-40-4x | | 2+2=4x+34 |