If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2=674
We move all terms to the left:
c2-(674)=0
We add all the numbers together, and all the variables
c^2-674=0
a = 1; b = 0; c = -674;
Δ = b2-4ac
Δ = 02-4·1·(-674)
Δ = 2696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2696}=\sqrt{4*674}=\sqrt{4}*\sqrt{674}=2\sqrt{674}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{674}}{2*1}=\frac{0-2\sqrt{674}}{2} =-\frac{2\sqrt{674}}{2} =-\sqrt{674} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{674}}{2*1}=\frac{0+2\sqrt{674}}{2} =\frac{2\sqrt{674}}{2} =\sqrt{674} $
| 5(x-1)-7=3(x-1)+2x | | 6(x+1)-10=4(x-1)-2x | | 2/3n-5/12=(2)1/4 | | 2/3n-5/12=1/4 | | 2/3n-5/12=2.1/4 | | 2x3x=2 | | 18=-9(v+1) | | u/4-5=-3 | | 14x2+3x-9=0 | | 10x2+8x+5=0 | | 19x2-20x-5=0 | | 16x2-10x-16=0 | | 19x2+18x-14=0 | | 5x-13=-40 | | 12x2-3x-14=0 | | 90h+60=600 | | 15x2-5x-15=0 | | 7x2-3x+7=0 | | 20x2+11x+8=0 | | 3x2-3x+3=0 | | 3x2+18x+7=0 | | 6x2-19x-6=0 | | 10x2-5x-6=0 | | 11x2+20x-1=0 | | 19x2+11x-6=0 | | -7(6=d=49 | | x+3/2x-4=5 | | 5(2-1/2y)+3y=9 | | 18x2-8x+4=0 | | 20x2-16x-5=0 | | 14x2+14x-17=0 | | 6x2-4x+7=0 |