If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d(8d+9)=0
We multiply parentheses
8d^2+9d=0
a = 8; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·8·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*8}=\frac{-18}{16} =-1+1/8 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*8}=\frac{0}{16} =0 $
| -3m+8m-12=33 | | 17=4-(z+5) | | 2w^2-7/2w-18=0 | | d/11-1/2=1/14 | | y-5=-{5-y} | | 62-(7x+11)=7(x+3)+x | | 1.4(a+2)=3a+7.4 | | 4w-8=44 | | 7r(2r+8)=32 | | -6+17x=2+16x | | 3.2d-4.1=-1.6(8d+6) | | h/2-8=-6 | | (5xxx^2+1)=(7) | | 129-w=197 | | -2(x-5)=6(2-0.5x | | Y=10.4x | | 6x+16=110 | | 5x+21=8x-27 | | 50-15t=-20t | | 2x^2+35=77 | | (d-9)=(d+9) | | -65(y-64)=y-(-61) | | 984×w=0 | | -65(64-y)=y-(-61) | | 4x-11=-6+5x | | -3q=-8−4q | | 11x+3x-14+6=88 | | 11x-3x+14+6=88 | | 3x°+(2x+5)°=90° | | 22x+x=180 | | 11x-3+14+6=88 | | 3(2n−1)=4(n+5)+1 |