If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d(d+2)=1120
We move all terms to the left:
d(d+2)-(1120)=0
We multiply parentheses
d^2+2d-1120=0
a = 1; b = 2; c = -1120;
Δ = b2-4ac
Δ = 22-4·1·(-1120)
Δ = 4484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4484}=\sqrt{4*1121}=\sqrt{4}*\sqrt{1121}=2\sqrt{1121}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1121}}{2*1}=\frac{-2-2\sqrt{1121}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1121}}{2*1}=\frac{-2+2\sqrt{1121}}{2} $
| F(a)+9=6(a)+9+7 | | 1/2(6a+8)=16 | | 11.50-1.50=t | | x(x+2)=55 | | 20x+7-3=13x+19 | | (4-4+5)x=25 | | 3(g-7)=+g=3 | | 94-4+5)x=25 | | 3.14=9420y | | x=15+(1/4*x) | | 4(x-2)+2=2(2x-4)+2 | | 1/2t+7=13 | | 6w-5+8w-2-3=9w-24 | | (x)+8=240 | | (2x/3)-4=(3x/2)+3x | | 2y-2(6-y)=6(3y+2) | | x+8=240 | | 206=81-v | | 6w-5+8w-23=9w | | x=2.5x-2.5 | | 102-y=201 | | 12+n-2n=n+3+3 | | 1/2n+5=3 | | -6(2x-7)+x=7(x+8) | | 12-(2x/3+x)=2 | | -5x+x=-2x+4 | | 231=14-u | | .66(6x+9)=3x+7 | | -2c+15=-3+4c | | 176-y=245 | | 9+4g;9=-3 | | x+18=6x-16 |