If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d(d+5)=0
We multiply parentheses
d^2+5d=0
a = 1; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·1·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*1}=\frac{-10}{2} =-5 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*1}=\frac{0}{2} =0 $
| (w-4/9)(-⅔)=-4/5 | | 87x-12=94+94x | | 29=4u–11 | | c/4=3.45 | | T(n)=5n+11 | | u+3.6=9.25 | | 4x+36=10x | | 79=-8s–9 | | w-9.11=6.1 | | 4(3x-2)=5x+41) | | 10x+16=54 | | 35n+20=150 | | -69=9a–15 | | 35n+20-150=0 | | 1/2x+1/3x+1/4x=26 | | u+6.11=9.41 | | 7b=8-5b+4 | | 5(−2x+5)+x−5=-43 | | v/3=10.1=-9.1 | | -49=7b | | 2=2g−4 | | 9.4=-3.4+4w | | 4x=9x-259 | | -1=k-4-2k | | 3p/24=3/2 | | 2x+50=8x+32 | | 4+v/2.56=6 | | 31=6c–11 | | (2x^2+5x-3)=(3x+7) | | 10(w+8)=-40 | | 6x+36=3x+60 | | -28=-4(8+s) |