d(d-1)=(2-d)+(d+4)

Simple and best practice solution for d(d-1)=(2-d)+(d+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for d(d-1)=(2-d)+(d+4) equation:



d(d-1)=(2-d)+(d+4)
We move all terms to the left:
d(d-1)-((2-d)+(d+4))=0
We add all the numbers together, and all the variables
d(d-1)-((-1d+2)+(d+4))=0
We multiply parentheses
d^2-1d-((-1d+2)+(d+4))=0
We calculate terms in parentheses: -((-1d+2)+(d+4)), so:
(-1d+2)+(d+4)
We get rid of parentheses
-1d+d+2+4
We add all the numbers together, and all the variables
6
Back to the equation:
-(6)
a = 1; b = -1; c = -6;
Δ = b2-4ac
Δ = -12-4·1·(-6)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-5}{2*1}=\frac{-4}{2} =-2 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+5}{2*1}=\frac{6}{2} =3 $

See similar equations:

| 5x+3=3-6x | | 5x+3=8-6x | | 2x+3=8-6x | | -6x=100 | | 2x+3=12-6x | | p+2.3=10.9 | | 3x-(30-x)×1=78 | | c3=12 | | 5x+1+2x=2+1 | | 5x+1+2x=2 | | 3*7x=2+9x | | 3x7x=2+9x | | 3-7x=2+9x | | 3+7x=2+-9x | | -3+7x=2+-9x | | -3+7x=2+-8x | | -3+7x=2+8 | | -3+7x=2+10x | | -3+7x=2+20x | | 1.91−y=3.21 | | 2p*p+4=76 | | 1/2xx+10=2/3x−10 | | 9^n+1-9^n=72 | | f(3)=(0.125)^3 | | 5/y^2-6/y-2=0 | | f(3)=(0,125)^3 | | f(3)=0,125^3 | | 6x+3x=65 | | 4x-10=7x-18 | | 10x+6x=60 | | 3x^2-x-36=0 | | 180-4x-4=0 |

Equations solver categories