If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d+d2=18
We move all terms to the left:
d+d2-(18)=0
We add all the numbers together, and all the variables
d^2+d-18=0
a = 1; b = 1; c = -18;
Δ = b2-4ac
Δ = 12-4·1·(-18)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{73}}{2*1}=\frac{-1-\sqrt{73}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{73}}{2*1}=\frac{-1+\sqrt{73}}{2} $
| 19x^2-250x+625=0 | | 5(x-7)+2x=14 | | 5n=6=41 | | 3a-64=4a-96 | | 16z-14z=20 | | 4(2x-3)=6x-7 | | 3(x+-4)+-16=2(x+-8)+6 | | 7=-7w+5(w+5) | | .108=9r | | 2p+40=14p+28 | | 8j-7j=17 | | 7-w=14 | | 10=7(x-8)+4x | | 5y-19=7y-31 | | 25k+18=9k+10 | | 10y+1=11y | | r/7-6=12 | | 11=3u+2(u+3) | | s=2s-46 | | 8w-18=w+10 | | 2x-6=2(-9)-16 | | 20y-91=3y+96 | | (X+72)+(x+132)=180 | | 2x+4+1=11 | | n/7=−12 | | 7b+49=20b-94 | | 3t+5/8=-8 | | 180=5b+4 | | 18(⅓)^2x=2 | | (x-3)^2+4=40 | | 10x=20+10= | | 4r+7=47-r |