If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2+7d+7=0
We add all the numbers together, and all the variables
d^2+7d+7=0
a = 1; b = 7; c = +7;
Δ = b2-4ac
Δ = 72-4·1·7
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{21}}{2*1}=\frac{-7-\sqrt{21}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{21}}{2*1}=\frac{-7+\sqrt{21}}{2} $
| 3-3x=45 | | X+4x=4x+1 | | x-6.8=14.7 | | 5y÷2=15 | | 7.50=15/n | | 6/3r=-7/2 | | 3+2x+(-34)=11 | | t+52=3 | | 3(4x+4)+5(2x-3)=-47 | | z-1/3=1/2/3 | | -(2x+10)=90 | | x+(2x-5)=130 | | b+42=3b | | 3x-8+4x=2x+18-6x | | 3x^2+5x+56=0 | | 9(f-94)=45 | | J=5x-2 | | x+5(6-8)-4=4+5x-2 | | 193=8b^2-7 | | 9(f−94)=45 | | 2/9q=-5/8 | | n^2+18n+61=-4 | | n÷3-4=20 | | 2(y-56)=60 | | 3(-x)-2(-x)-(-4)=(-x)-x+1 | | 2(y−56)=60 | | x^2−2x−24=0 | | 96=6(n+2) | | 3-4r=-25 | | x^2−2^x−24=0 | | 5r^=80 | | 48=4(h+72) |