If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2-64=36
We move all terms to the left:
d2-64-(36)=0
We add all the numbers together, and all the variables
d^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| x2-10=111 | | -2y+25=17 | | x/65=2/5 | | -24=12+y | | d2=225 | | 3b/4-11b/24=11/6 | | 6a+20=5a+1 | | a2-25=75 | | x2-67=-3 | | g2/25=4 | | 49=-7f | | r2+16=160 | | p(23)=-184 | | 8m2+64m=0 | | 4-(x+2)=-7 | | 5(2x+8)-3x=12x-3(x-4) | | 4x+12=−3x−18 | | 0.0001/y=0.01 | | 1/x(9-3x)=1.75 | | X^2=y(8-y) | | t=3t-36 | | 20(2x-2)=15(x+9) | | 9+5h=59 | | 6x+18=3x−8 | | x/6.8=4.8 | | 15+4c=79 | | x/5.3=3.4 | | 2x+(x+3)=30 | | 4c=15+79 | | 6(f-84)=72 | | 1/3x+1/2x+3/10=×+5/6 | | 3x2,x=6 |